Global methane budget and trend in 2010-2017:
comparative and joint inversions of suborbital (ObsPack) and
satellite (GOSAT) observations
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Ongoing efforts to understand methane budget and trend
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Inversion analyses to interpret methane budgets

compare
> P

predicted observation (Yprior) ® observed methane concentrations (y)

_ optimize emissions
Observation y A using Bayes’ Theorem
(posterior estimate) é}

3-D chemical transport model
y = F(x) solve V,InP(x|y)=0

State vector x




Comparing suborbital and satellite observations in inversion

ObsPack methane from NOAA, 2010-2017 GOSAT measurements of, 2010-2017
(surface , tower, shipboard, aircraft) atmospheric methane column

.€0O, proxy, U. Leicester

arker et al/. 2015]
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Pros: accurate, sensitive to surface flux Pros: massive, global coverage
Cons: sparse Cons: errors associated with retrieval

Are ObsPack (suborbital) and GOSAT (satellite) observations
consistent and complementary/redundant in inversion?




Method: analytical inversion of ObsPack and GOSAT observations

Chemical transport model
(forward model) State vectors (x),

y = F(x) = Kx Methane emission and loss, n=3378

. < « 2010-2017 mean non-wetland methane

3 W GE&'S-Chem emissions and trends on 4°x5° grid
- = 73 * Monthly wetland emissions in 14

(ObsPack)  (GOSAT) Solve Vi In(P(xly) =0 | subcontinental regions
Analytical inverse modeling * Annual hemispheric OH concentrations

Observation (y)

(a) Prior non-wetland emissions [Mg km? a']

Prior estimate of emission (533 Tg a™) ON T
» GFEI oil/gas/coal emission inventory (consistent &N ['3
with UN report) 30N
» Gridded EPA for US o -
« EDGAR v4.3.2 for others s0s |
« WetCHARTSs wetland from JPL s0s |
* No trends in 2010-2017.
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Method: analytical inversion of ObsPack and GOSAT observations

Chemical transport model
Ob ti (forward model) Sta_te YeCtOI'S (),
servation (y) y = F(x) = Kx Methane emission and loss, n=3378

« 2010-2017 mean non-wetland methane

<
’E W GEZ'S-Chem emissions and trends on 4°x5° grid
_—— 7> * Monthly wetland emissions in 14

(ObsPack)  (GOSAT) Solve Vi In(P(xly) =0 | subcontinental regions
* Annual hemispheric OH concentrations

Analytical inverse modeling
Solution of Vx ln(P(x| y)=0 by minimizing the cost function
J@) = (x—x)TSa 7 (x —x0) + ¥(y — K©)TSp ' (¥ — Kx)

. . ~ _ 1\ 1 -
O Analytical solution X =x4+ G(y—Kxy,) where G = (YKTSo 'K +5,7') yKTSp™!
Prior  Correction to prior based on observation

O Yielding closed-form posterior error § and averaging kernel sensitivity A in analytical solution:

< Te -1 131 L0 _ e -1 Quantify the capability of the observation
$= (YK S0 "K+S54 ) A= ax [n =554 — system to constrain the state vector. ©



Method: analytical inversion of ObsPack and GOSAT observations

Chemical transport model
Ob ti (forward model) Sta_te YeCtOI'S (),
servation (y) y = F(x) = Kx Methane emission and loss, n=3378

> - « 2010-2017 mean non-wetland methane
W GES =-Chem emissions and trends on 4°x5° grid
N * Monthly wetland emissions in 14
Solve V. In(P(x|y) =0 . subcontinental regions
* Annual hemispheric OH concentrations

(ObsPack)  (GOSAT)

Analytical inverse modeling

O Conduct ObsPack-only, GOSAT-only, and GOSAT+0ObsPack inversions

O Analytical inversion with error characterization allows quantitative comparison of the

ObsPack vs GOSAT information

O GOSAT+0ObsPack joint inversion provides the “best” estimate of methane budget and

trend ,



Model-observation methane difference [ppb]

Posterior model fit to observations

(a) Prior

(b) ObsPack-only posterior
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(c) GOSAT-only posterior (d) GOSAT+0ObsPack posterior
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(e) Prior (f) ObsPack-only posterior (g) GOSAT-only posterior (h) GOSAT+ObsPack posterior
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methane budget imbalance (as it can fit observed trend).

2010 2012 2014 2016

O Using either ObsPack or GOSAT is enough to constrain background methane and global

O GOSAT could not fit ObsPack surface / tower observations that are sensitive to source. @



Ability of ObsPack vs. GOSAT to constrain anthropogenic emission
Averaging kernel sensitivities for non-wetland R
(anthropogenic) emissio A= ax — In _ :S-\SA—l
_ AT ) - . ox

DOFS: Degree of freedom for signal,
trace of (A), =1009 if fully constrained

ObsPack-only
inversion

O Globally, GOSAT provides more information than ObsPack.
(DOFS=212 vs DOFS=89)

GOSAT-only
inversion O ObsPack can add 37 (249-212) independent pieces of
information to GOSAT (complementarity).
O GOSAT provides strong constraints in the tropics,
ObsPack can be valuable in northern middle and high
GOSAT+0ObsPack )

inversion latitudes (US, Canada, Europe, China).
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DOFS=249 ~ .
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Posterior correction to anthropogenic emissions

Averaging kernel sensitivities Posterior scaling factors

—L1 Prior US emissions are too
ObsPack-only

inversion

low, from oil/gas.

O Prior Chinese emissions are

GOSAT-only too high, from coal.
Inversion
O Prior Canadian emissions are
too low, from oil/gas.
GOSAT+ObsPack

inversion

Note: prior oil, gas, and coal

emissions match the UN report.
00 02 04 06 08 10 00 04 08 12 16 20 [Scarpelli et al., 2020] 10



Anthropogenic emission trends in 2010-2017

Averaging kernel sensitivities = Estimated trend [a™]

Globe
Emission trend [a ']
5 0 5 10
ObsPack-only . | Total trend (DOFS)
inversion Livestock e ObsPack: 3069.8(51) |
Oil&Gas I o GOSAT: 892.6(122) |
: I8 GOSAT+0ObsPack: 1786.7(150)

DOFS=51 v Coal F ¢ |

Rice |- & T

Wastewater |- o T

Landfill [ ? 7

Other anthropogenic [ ° .

GOSAT-only .
inversion -400 0 400 800
Emission trend [Gg a'a']
O Increases of anthropogenic methane
emissions by 1.8 Tg a!, driven by
GOSAT+ObsPack
mversion agricultural emissions in the tropics.
(from the joint inversion)
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Emission [Tg mon'1]

Emission [Tg mon™]

Posterior correction to wetland emissions
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Boreal NA

Temperate NA
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Joint inversion
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Prior wetland emissions from the WetCHARTSs inventory.
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[Bloom et al., 2017]

O ObsPack is more powerful than GOSAT in North America to constrain wetland emissions. (Complementarity!)

O Both show that prior is too high in NA, correction to late-spring low and summer peak. (Consistency!) 1



Global methane budget in 2010-2017
Prior ObsPack GOSAT GOSAT+ObsPack

Total sources [Tg a'] 533 520 504 539
Anthropogenic 344 359 333 361
Wetland emission 161 131 140 145
Fire emissions 14 15 16 16
Seep, termites 14 15 15 16

Total sinks [Tg a™] 540 499 478 515
OH oxidation 468 426 406 442
Other loss 73 73 72 73

Mean imbalance [Tg a™] -7 21 26 24

Methane chemical lifetime [a] 10.6 11.}9// 12.5 11.5

Equivalent to mean methane growth of 7.7~8.8 ppbv a’, compared to 7.2 ppb a’ in observation

Global Carbon Project: 5638~593 Tg a’ in 2008-2017, 360 Tg a’ are anthropogenic sources.

O All inversion reproduce the mean methane budget imbalance, though sources and sinks are different.

O GOSAT+0ObsPack provides the most consistent budget with literatures. 13



Take home message

« GOSAT and ObsPack are complementary in the inversion, with GOSAT
dominating the global patterns, but ObsPack being more important for
northern mid-latitudes.

« GOSAT+0ObsPack joint inversion finds:
» underestimation of oil/gas emissions in US and Canada
» overestimation of coal mining emissions in China
» Wetland emissions in North America are over estimated
» oil/gas emissions are increasing in US
> Global anthropogenic methane emissions are increasing by 1.8 Tg a2

« Methane emissions and loss are 539 and 515 Tg a’ in 2010-2017.



